Preliminary communication

The angular dependence of the ¹H-¹⁹⁹Hg and ¹³C-¹⁹⁹Hg coupling constants of specifically mercurated sugars

VICTORIA G. GIBB and LAURANCE D. HALL

The Department of Chemistry, The University of British Columbia, Vancouver V6T 1W5 (Canada) (Received April 26th, 1976; accepted for publication, June 11th, 1976)

As part of a continuing programme on the use of carbohydrate derivatives as model systems for determining¹⁻³ the stereospecific dependencies of heteronuclear magnetic resonance parameters, we now report results obtained from the known⁴ products (1,2) of the methoxy-mercuration of D-glucal triacetate.

Mercury has seven stable isotopes: atomic weights 196, 198, 199, 200, 201, 202, and 204; two of these, ¹⁹⁹Hg (16.86%, spin 1/2) and ²⁰¹Hg (13.24%, spin 3/2), are magnetic in the n.m.r. sense. Only the former is of concern here since it splits into doublets the ¹H- and ¹³C-resonances with which it couples; as a result, the transitions of those molecules bearing a ¹⁹⁹Hg-substituent generally appear as satellite peaks located symmetrically about, and each with 10% of the intensity of, the resonances of those molecules which contain the other mercury isotopes.

TABLE I

1H-199Hg COUPLING CONSTANTS (Hz)² FOR 1 AND 2 IN ACETONE-d₆ SOLUTION

Compound	Proton								
	H-1	H-2	Н-3	H-4	-				
1	30	181	131	17.5					
2	84	215	418	11					

aMeasured with a Varian XL-100 (15) spectrometer operating at 100 MHz in the F.t. mode at 35°.


TABLE II 13 C-CHEMICAL SHIFTS\$^2\$ AND 13 C- 199 Hg COUPLING CONSTANTS (Hz, IN PARENTHESES) FOR 1 AND 2 IN ACETONE- d_6 SOLUTION

Compound	C-1	C-2	C-3	C-4	C -5	C-6	ОМе
1 <i>b</i>	103.42	54.63	75.73	71.71	72.80	63.22	56.72
	(49.2)	(1855.5)	(120.4)	(225.2)	(8.2)	(11.2)	d
2¢	101.09	56.20	72.04	71.15	69.10	63.35	55.22
	(12.3)	(1853.7)	(135.3)	(53.3)	d	d	23.4

^aMeasured at 32.6° with a Varian CFT-20 instrument operating at 20 MHz; 45° pulse, 10μsec; AT, 1.023 sec; PD, 0.6 sec. Shift values, with respect to internal Me₄ Si, and assignments confirmed by selective proton decoupling. ^b0.2M; NT, 41,000. ^c0.5M; NT, 34,000. ^d Indeterminate.

Tables I and II summarise the coupling constants obtained from the ¹H- and ¹³C- n.m.r. spectra of methyl 3,4,6-tri-O-acetyl-2-(chloromercuri)-2-deoxy-β-D-gluco-pyranoside [1, m.p. 172–174° (from ethanol—acetone)] and methyl 3,4,5-tri-O-acetyl-2-(chloromercuri)-2-deoxy-α-D-mannopyranoside [2, m.p. 131–132° (from ethanol—acetone)].

Immediately obvious is the pronounced angular dependence of the ¹H—¹⁹⁹Hg couplings, which appears to conform with the general pattern predicted by Karplus⁵. The couplings of the anomeric protons also show a configurational dependence analogous to that previously documented for the corresponding proton⁶, fluorine¹, and phosphorus² couplings. The angular dependence of the *vicinal* ¹³C-couplings is clearly depicted in the partial structural formulae 1a and 2a.

Both these dependencies are in good accord with previous studies⁷ of monoalkyl mercury derivatives; the difference between our value for the H-2—¹⁹⁹Hg coupling of 1 and that given by Horton et al.⁸ is easily explicable.

The particular suitability of carbohydrate derivatives for heteronuclear studies of this kind is further exemplified by the wealth of other couplings listed in the Tables. These couplings, and those of other mercurated carbohydrates, will be discussed in detail elsewhere.

ACKNOWLEDGMENTS

This study was supported by the National Research Council of Canada and by the Alfred P. Sloan Foundation.

REFERENCES

- L. D. Hall, J. F. Manville, and N. S. Bhacca, Can. J. Chem., 47 (1969) 1-18; L. D. Hall, R. N. Johnson,
 A. B. Foster, and J. H. Westwood, ibid., 49 (1971) 236-240, and references therein.
- L. D. Hall and P. R. Steiner, Chem. Commun., (1971) 84-85; L. Evelyn, L. D. Hall, L. Lynn, P. R. Steiner, and D. H. Stokes, Carbohyd. Res., 27 (1973) 21-27.
- 3 J. R. Campbell, L. D. Hall, and P. R. Steiner, Can. J. Chem., 50 (1972) 504-506.
- 4 G. R. Inglis, J. C. P. Schwarz, and L. McLaren, J. Chem. Soc., (1962) 1014-1019.
- 5 M. Karplus, J. Chem. Phys., 30 (1959) 11-15; J. Amer. Chem. Soc., 85 (1963) 2870-2871.
- 6 B. Coxon, Tetrahedron, 21 (1965) 3481-3503; L. D. Hall and J. F. Manville, Advan. Chem. Series, 74 (1968) 228-252.
- 7 M. M. Kreevoy and J. F. Schaefer, J. Organometal. Chem., 6 (1966) 589-597; W. Kitching, D. Praeger, D. Doddrell, F. A. L. Anet, and J. Krane, Tetrahedron Lett., (1975) 759-762, and references therein.
- 8 D. Horton, J. M. Tarelli, and J. D. Wander, Carbohyd. Res., 23 (1972) 440-446.